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Outline

• The source code.

• The profiler.

• Executing unit tests.

• Runtime Verification.
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• Runtime Verification.
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Overview of the Code

• ~1.2 million SLOC

• Organized by functional module (~150 

modules)

• The code in each directory is independent of 
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• The code in each directory is independent of 

other code (can be built separately).

• Compiles and executes on x86 Linux.

• Built as shared libraries but must be built 

statically.
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Build Changes

• Components are compiled as shared libraries.

• Shared libraries cannot be easily 

instrumented.

• Modified the build process to do the build so 
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• Modified the build process to do the build so 

that the executable is linked statically.

– Determined what source files are needed (cross-

module), build and link them with the unit tests.
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• The source code.

• The profiler.

• Executing unit tests.

• Runtime Verification.
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• Runtime Verification.
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The Profiler

• Created by my 4 NEAP interns this summer.

• C profiler.

• Event-based (function entrances/exits).

• Captures execution trace and can export the 
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• Captures execution trace and can export the 

trace as: plain text, CSV, XML

• Translates function addresses to function 

names.

• The interns did a fantastic job.
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Instrumenting the Code

• Modified the makefile to include support for:

– Profiling (add my interns’ profiler object file when 

linking)

– Debugging – allows for translation of (useless) 
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– Debugging – allows for translation of (useless) 

function addresses to (useful) function names.
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Example Execution Trace

main  (1)  (??)

|=-function1 (1)  (main)

|=-|=-function2  (1)  (function1)

Indentation 

shows depth.
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|=-|=-function2  (1)  (function1)

|=-|=-function3  (1)  (function1)

|=-|=-|=-function4 (1)  (function3 )

|=-|=-|=-|=-function5(1)  (function4 )
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• Runtime Verification.

9



Executing the Unit Tests

• A wrapper facilitates the execution of the unit 

tests.

• The wrapper provides stubs for hardware-

specific functionality.
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specific functionality.

– Allows for testing the code on X86 Linux by 

providing stub functions for the hardware-specific 

functionality.
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UTH Example

Event Report 

Module

(.h file)

Event report generation for FSW build:

FSW Event Report 

Module

(.c file)

Any FSW Module
Event Report It
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Event Report 

Module

(.h file)

Event report generation for Test build:

UTH Event Report 

Module

(.c file)

Any FSW Module
Event Report It
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• The source code.
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• Runtime Verification.
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Runtime Verification

• Requirements for runtime verification:

– Code that will compile and execute.

– Ability to instrument the code to monitor the 

execution.
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execution.

– Ability to compare the execution with a model of 

the desired behavior.

• None of the FSW or unit tests were modified 

for this work.
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Purpose

• Using the execution trace of the code, can we 

identify the presence of implemented 

requirements?
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Why We Can Attempt to Answer This

• Unit tests achieve 100% coverage of module 

testing, per developer rule. 

– If a requirement has been implemented, it should 

be in the execution trace.
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be in the execution trace.
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Untested lines include 

default statements in 

switch statements and 

code which is tested by 

other modules.



Modeling the Behavior

• Model can be created in two forms: 

– Plain text

– UML activity diagram (work in progress).

• Only one model per requirement is necessary.
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• Only one model per requirement is necessary.

• Which model type to create and use is up to 

the analyst.

• The behavior can be desired behavior or 

undesired behavior.
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Plain Text Model for Event Reporting

Model Rules:

command: <command>

success: <result>

failure: < result >

At least one command.

Either Success, Failure, or both.
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failure: < result >

Example Model:

command: disable_bus_cmd

success: OK

failure: ERROR
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Corresponding UML Model
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Eclipse Integration Overview

• Provides a new Eclipse project type called 

“NASA IV&V Runtime Verification.”

• Two new file types:

– Text Model Requirement
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– Text Model Requirement

– Execution Trace

• Custom editors for both file types that 

includes syntax highlighting and error 

checking.
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Eclipse Integration (1)

• Plug-ins allow 

for creating a 

“Runtime 

Verification” 
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Verification” 

project.

• Project contains 

text models and 

execution traces.
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Eclipse Integration (2)

Code Execution and Runtime Verification 21



Eclipse Integration (3)
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Eclipse Integration (4)
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Model Checking

• Checks the execution trace for the model.

• Takes into consideration the:

– Order of commands.

– The depth of the call tree.
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– The depth of the call tree.

– The distance between located commands.

• Will likely consider other factors as the 
algorithm development progresses.

• Will accommodate UML models once 
algorithm is sufficient.
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Limitations

• Cannot test requirements that specify timing 

or latency constraints.

• Cannot test hardware-specific requirements 

without the flight hardware.
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without the flight hardware.
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Summary

• Runtime Verification can provide:

– Assurance that a requirement is implemented.

– Confirmation of a non-implemented requirement.

– Assertion checking to monitor states.

• Execution and profiling can provide:
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• Execution and profiling can provide:

– Code coverage metrics:

• Locate untested code.

• Focus V&V efforts on code executed the most (80/20 rule).

– Isolating requirements in unit tests provides the 
source code which implements that requirement.

26



Thank You

• Jeff Zemerick

• jeffrey.zemerick@tasc.com
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